Why UMass Lowell?

This past Saturday, hundreds of prospective students attended our recruiting event with parents, siblings (sometimes begrudgingly), guardians and friends in tow.  On numerous occasions, I was asked, “Why should we choose UMass Lowell over University [insert name]?”  The comparison school ranged from private to public, small to big, and urban to rural.  I thought I would share my answer, regardless of the school named:

  • Program Choice: Students in the College can pursue degrees in Biomedical, Chemical, Civil, Computer, Electrical, Environmental, Mechanical, Nuclear, and Plastics Engineering; options in Biological, Nanomaterials, and Nuclear Engineering; and minors including Aerospace Studies, Biomedical Technology, Business Administration, Climate Change and Sustainability, Computer Science, Economics, Energy Engineering, Entrepreneurship, Mathematics, Nuclear Science and Engineering, Physics, Robotics, Sound Recording Technology, STEM Teaching, and Technology, Society and Human Values.  Additionally, every major provides a Bachelor’s to Master’s Degree Option where one can earn two degrees in as little as five years.  But perhaps most importantly, new students may start with “Undeclared Engineering” in order to determine which path, amongst this myriad of choices, aligns best with their interests.
  • Experiential Learning Opportunities: Whether participating in a society or club, volunteering to teach at a local school, studying abroad, enrolling in the professional co-op option, carrying out research in a laboratory, or building prototypes for an entrepreneurship competition, the opportunities to learn outside of the classroom are vast.  These activities deepen the college experience, build valuable skills, and lead to lifelong friendships.  They can also make a bigger school, which has the benefit of more program options, feel small.
  • Location, Location, Location: According to data from the Bureau of Economic Analysis, nearly 75% of the Commonwealth’s Gross Domestic Product is generated within the I-495 corridor.  As Lowell sits on I-495, UMass Lowell has easy access to companies for internships, co-ops, industrial senior design projects, and research projects.  This translates to excellent placement rates for our graduates!
  • Personal Return on Investment: Payscale.com is a popular resource for analyzing the return on an investment (ROI) in a degree – a measure of earnings after graduation compared to the cost of attendance.  We are proud to be ranked second in the state for annual ROI.  But one must understand that these rankings are based on average data, and only a student can compute their true ROI.  That is, the cost of attendance is dependent on residency, degree (some charge fees), and the amount of financial aid or scholarships.  These are all personal data points that may vary widely.  However, starting salaries do not vary widely for new graduates with a specific Engineering degree at a specific company.  Thus, to calculate the ROI upon graduation, the ROI numerator is similar for most Engineering graduates – making the denominator (cost of attendance), critical.  Being a public university where 90% of need is met, UMass Lowell is quite competitive, making its ROI, very attractive.

So, regardless of the school for comparison, I would argue that UMass Lowell is a sound choice!

The Power of Innovation

If you were to ask an educator to name one of the biggest trends of today, they might point to the ever-increasing number of programs on campuses dealing with entrepreneurship and innovation.  UMass Lowell has been a leader in this movement, with its DifferenceMaker program set to host its sixth Idea Challenge this spring, awarding $50,000 in prize money to deserving student teams that generate (and sell) ideas with appeal and potential.

In an effort to further prepare our students for the Idea Challenge, the Francis College of Engineering hosts a Prototyping Competition each Fall.  The finals were held last week, with winning prototypes that included an inexpensive wound dressing for use in the field; a smart pill dispenser; an automated paint mixer (matching color to a digital picture); and an app for students to more easily find a job on campus.  As novel as the potential products were, I saw more potential in the students – ranging from freshmen to graduate students from across the University. They were not competing because it involved a grade or was required – they were participating because they had an idea that they wanted to pursue and share.

A few years ago, UMass Lowell was invited to be an inaugural participant in the Pathways to Innovation program created by the NSF-funded Epicenter and VentureWell.  It was through this program that entrepreneurial endeavors, such as our Prototyping Competition and Interdisciplinary Senior Design Program, were started.  It was also through this program that faculty, such as Dr. David Willis of Mechanical Engineering, were encouraged to integrate innovation and entrepreneurship into the engineering curriculum.

Yesterday, I attended our MECH.1070 Project Expo – 45 teams of Mechanical Engineering freshmen showing off products built in their “Introduction to Mechanical Engineering” class (taught by Dr. Willis).  Specifically, students were asked to build a CNC (Computer Numerical Control) machine.  While we normally think of a CNC machine as a lathe or mill, the students were tasked with being creative and turning their 2- or 3-axis machines into something “useful”.  Cleverly coupled with multiple sensors, I witnessed machines that: read text and printed braille; dispensed ideal amounts of toothpaste and mouthwash; folded a shirt; dispensed medication; mixed vaccines; played chess; and whimsically made peanut butter and jelly sandwiches (just to name a few projects).  I learned, and laughed, and was extremely impressed, as each team “pitched” the value of their product.

It was clear that the students had learned a lot – about design (and CAD), manufacturing (machining and additive), and control (sensors and lots of MatLAB code).  But it was also clear that the students had fun – and had a purpose.  When asked about their motivation, they all had good answers – usually wanting to solve a problem or making the world a better place.  That is the power of innovation.

 

Engineering and Design: Ever Connected

It is hard to believe that the smartphone revolution started just 10 years ago this year, with Apple having delivered its first iconic iPhone in 2007. I often have trouble remembering my life before my first smartphone. I vaguely remember my Nokia 3210 and Motorola Razor, while also owning a digital camera and a digital calendar (PDA). I also vaguely remember a time when I could not access my email 24/7. (I’m not here to debate whether that is progress!) Continue reading

American Time Use Survey (part II): Educational Pursuits

In my last blog, I took a look at commuting travel time for Americans from data released by the Bureau of Labor Statistics and its “American Time Use Survey” (In this note, I wanted to examine the amount of time spent on educational activities.

The survey breaks out “Educational Activities” according to attending class, homework and research, and related travel time. Additionally, it breaks out whether class attendance is in pursuit of a degree, certification or licensure.

In College, we stress lifelong learning to our students. In Engineering, the accreditation body ABET specifically states this as one of 10 required student outcomes: “a recognition of the need for, and an ability to engage in life-long learning.” It should be clear that this is a requirement in the field of Engineering, because technology continues to evolve at a dramatic pace. Thus, Engineers must continue to educate themselves, formally and/or informally, to stay ahead (or at least keep pace).

According to the survey data, 8.3% of Americans aged 15 and over participated in educational activities. This number plummets to 2.2% for those employed full-time and increases to 16.7% for those employed part-time.

How does this relate to a decade ago? All of the percentages are down, from 9.4%, 3.8%, and 19.4%, respectively. Interestingly, the data doesn’t show tremendous variance over the decade (range is between 7.9% and 9.4% for the overall cohort) despite covering a recession and recovery period.

Taking a deeper dive into the data according to age, 37.4% of those between the ages of 15 and 24 (inclusive) are pursuing education. This drops precipitously to 6.0% for those between 25 and 34 (inclusive) and to 2.5% for those in the 35 to 44 year-old range.

I want to focus on the data for those in the 25 to 34 age range, because given the age divisions provided by the survey, this group encompasses the most recent college graduates and those that are most likely early in their career. The 6% participation is one full percentage point lower than the average over the past decade, and 2.6% lower than the high for the decade, although it is not the lowest. A regression line through the 10 years worth of data is relatively flat, signaling little change over time. As an educator, I am more concerned about the low percentage.

A look at census data on educational attainment in the United States, from the U.S. Census Bureau gives us further insight into the meaning of the participation rate. The bureau reports on educational attainment of the American population aged 25 and over. The time use survey reports rates of participation in educational activities as 3.6% (ages 25 through 54 years), 1.4% (ages 55 to 64 years), and 0.7% (ages 65 and older). As the population of the United States is distributed roughly at 48%, 13%, and 15%, respectively, for these age brackets (also from Census data), we can compute a participation rate in educational activities of about 2.5% for the population aged 25 and older.

In America (according to 2016 Census data), 30% of the population aged 25 and over has attained an associate’s or bachelor’s degree. This drops to 21% for a bachelor’s degree and 12.6% for a master’s, doctorate or professional degree. So, if (rounding) 13% of the population has an advanced degree by age 25, that means that 8% of the population has the ability to pursue an advanced degree (difference between bachelor’s degree holders and advanced degree holders). But, as computed above from the time survey data, only 2.5%, or less than 1/3 of those eligible, choose to pursue education. In fact, the percentage that could be pursuing an advanced degree is actually lower, because the 2.5% figure includes the entire population, which may not have a bachelor’s degree.

Does everyone need to pursue an advanced degree? Of course not, but I would argue that all engineers have to continue their education beyond the bachelor’s degree. Technology is changing too rapidly and one must continue honing skills in this ever-changing environment.

Now, I could be overly paranoid. The percentage of bachelor’s degrees conferred in Engineering and Engineering Technology in the United States is roughly 5.5% (from the National Center for Education Statistics, at nces.ed.gov). So, if 21% of the population aged 25 and over has a bachelor’s degree, roughly 1.2% of that population are engineers. Furthermore, if 2.5% of those aged 25 and over are pursuing further education, then maybe all of the engineers (and others) are continuing their education.

But having completed that computation, I am once again reminded of another concern: the low number of degree-d engineers in our population.

More to come…

 

 

You’ve graduated… and now you need to decide on a job!

Jeffrey Sparshott of The Wall Street Journal recently reviewed an interesting article in the National Bureau of Economic Research working paper series by John Haltiwanger, Henry Hyatt, Lisa B. Kahn, and Erika McEntarfer concerning job place mobility. The conclusion, which perhaps was not surprising, was that small companies were viewed more as potential “poachers” of talent from larger companies, rather than vice versa. To me, this leads to an interesting question for graduates looking to enter the workforce – timely as we just held commencement ceremonies a few weeks ago.

What job is the best fit for me?

Honestly, this is one of my favorite questions to discuss with soon to be graduates: First off, it’s a great question because it means that the soon to be graduate is in a great situation of having multiple job offers. Second, it’s a great question because there is no right answer – but there are surely many aspects to consider which impact people differently. These aspects include location, job title, salary, industry, and, yes, company size, which is often related to culture.

So the question to ponder here is, “What is the better first job, one with a small company – such as a start-up, or one with a large company that is well established?” Again, there is no right answer, but many aspects to consider.

With a large company, there is likely to be more stability, as the company will (generally) have its funding in order and thus can concentrate on its core business. Start-ups are usually in a more precarious position with regards to funding, and thus, their employees are generally at a higher risk of turnover or job loss. Note: large firms are not immune to this, especially firms such as defense contractors that rely on winning government contracts – a lost contract can also mean lost jobs. But in general, large firms tend to be more stable. This may be important if one has obligations and must financially care for dependents.

Of course, the counter to stability can be exciting – working to stay in business can be an exhilarating experience. And for taking the risk, employees are often compensated with stock options such that if the company does make it – the employees still receive a financial “buffer”.

Another factor to consider is professional development. Large companies often have well-established programs that provide employees an opportunity to improve their current job performance, as well as benefit their careers in general. Such training may be “in-house” – soft-skills programs overseen by professional trainers or human resource teams. Some companies may choose to partner with universities to provide training that can lead to certifications and advanced degrees. Many firms may cover the cost of tuition completely (or a percentage), assuming the employee succeeds in the coursework (often measured by the resulting grade).

Small companies, for reasons already noted, do not generally have these training programs in place. However, the training they offer can be equally valuable – on the job training. A strong argument in support of taking a job at a small company is that one will generally have the opportunity to wear “many hats” while at the firm. A budding engineer may get to work on various projects while also selecting and validating potential vendors – a task that normally occurs through a sourcing department in a big company. It may also mean that a civil engineer hired to do some structural analysis will also be writing computer code to implement solutions – again, a task that may be handed off to a software engineering department at a bigger firm. Small company job seekers need to be prepared for the potential diversity in their job tasks, which can be enjoyable. However, one may never achieve the “depth” of a position that they desire.

One “myth” that I believe does exist is that only smaller companies are looking for employees with entrepreneurial mindsets. While smaller companies undoubtedly look for these traits in employees, it should not imply that large companies do not seek employees with these skills. Large companies need similarly thinking employees in order to forge new areas for business, whether it is new product development or expanding current products into new markets. These types of “moves” require thinking that is often out of the box, or entrepreneurial. This is why our Chancellor started the DifferenceMaker program at UMass Lowell – to allow every student to engage in entrepreneurial endeavors during their time on campus.

In Engineering, we have expanded these options to include a prototyping competition, student club competitions, and externally sponsored senior design projects.

An entrepreneurial mindset will help with any future company – whether you are the first, second, or 1000th employee at the firm.

The Perfect Capstone Experience

ABET, formerly known as the Accreditation Board for Engineering and Technology, requires an integrative experience for all accredited programs. Specifically, according to abet.org:

Baccalaureate degree programs must provide a capstone or integrating experience that develops student competencies in applying both technical and non-technical skills in solving problems.

To me, the key to this experience is the application of both technical and non-technical skills. Interestingly, when employers are asked to rank the importance of different skills for new workers, they generally focus on non-technical skills. In a recent survey of employers, the National Association of Colleges and Employers (NACE) ranked leadership; ability to work in a team; communication skills (written); problem-solving skills; communication skills (verbal); strong work ethic; and initiative, ahead of quantitative and technical skills in terms of importance.

This is why it is critical that students gain experience during their schooling, and why I champion co-ops and internships. However, if designed properly, the capstone experience that is required by ABET provides another opportunity to develop integrated technical and non-technical skills. The key ingredients to these capstone projects are:

  • Complex design problem defined by external stakeholder and faculty mentor.
  • Teams of interdisciplinary teams working towards a solution.
  • Significant and ongoing opportunities for written and oral communication between the student teams, mentor and stakeholder.

I truly believe that the best projects come from outside the ivory tower. This is not to say that a Professor cannot define a great project for a student team to tackle – surely they can. However, they cannot provide an “outsider’s perspective” on the provided solution. That is, if a problem is defined by an external stakeholder (i.e., company, government entity, non-profit agency, etc.) that has a vested interest in the solution, then the students will be required to communicate the development of the solution over time with that entity. This is an important skill for students to develop – even engineers have to learn to “sell” their solutions, to co-workers, administrators, and clients. Furthermore, this generally requires both written and oral communication. (Note: it is assumed that the design problem posed by an external stakeholder is properly vetted and scoped, and that a faculty mentor will also work with the team.)

Our Electrical and Computer Engineering (ECE) program has been working with non-profit agencies for years through its Assistive Technology Program. Through these projects, students develop technological solutions for people in need (i.e., physical or learning disabilities, etc.). The program continues to grow in scope, with projects starting to reach beyond just ECE capabilities.

Other Departments work with external partners too. Our Civil and Environmental Engineering Department has completed projects with the Massachusetts State Police while our Mechanical Engineering Department has completed projects with the National Parks Association. ME has also partnered with Physics to work on satellite design projects for NASA.

Turning to industry for that “outsider’s viewpoint”, we launched a new Interdisciplinary Senior Design program two years ago with great success. This year, we ran 16, year-long projects for Computer, Electrical, Mechanical and Plastics Engineering majors with sponsors that included Analog Devices, BAE Systems, Brooks Automation, Dell EMC, MACOM, MKS Instruments, Nypro (A Jabil Company), Raytheon, Skyworks, Symbotic and UTC Aerospace Systems. In general, the students proposed a solution in the first semester (after significant research) and built a prototype in the second semester.

While the solutions were great, I was more excited about the ongoing communications during the semester. The student teams were required to write a memo each week, detailing the advances for the week, next steps, and current (or potential future) concerns. This provided a running development log (augmenting project management plans as well as student engineering notebooks) and introduced the concept of risk analysis to students (by forcing them to identify current or potential concerns). It also served as a basis for weekly discussions between the students, the stakeholder, and the faculty mentor.

In addition to the memos and engineering notebook logs, the students were required to write multiple reports, develop a summary poster, and deliver numerous presentations. The final presentations were delivered in front of all teammates, classmates, faculty advisors, and stakeholder liaison engineers. It was the perfect culminating experience to the capstone program for this year. And it illustrated that a properly defined and executed capstone design project can advance those skills identified by NACE to be highly desirable by industry.

 

 

Defeating Student Debt through Co-op

The New York Times published an interesting article by Meredith Kolodner this week, entitled “6 Reasons You May Not Graduate on Time.” The author consulted a number of higher education professionals to define the leading causes. I’d like to focus on the first cause listed, “Working Overtime.”

According to the article, about 40 percent of undergraduates work 30 hours per week or more. Informal surveys in our classes support this number. This is a noble endeavor, as the student’s goal is generally to pay for College, including tuition, fees and living expenses. As noted in an earlier blog, the average debt of a student is around $34,000 upon graduation. This average amount of student debt is up nearly 70 percent in the last decade, according to a recent article in the The Wall Street Journal.

The problem is that working nearly full-time makes it difficult for a student to complete the required number of credits each semester to graduate on-time. That is, instead of taking 15 credits or more in a semester, students take a lighter load so they can work more hours. (Taking less than 15 credits a semester is also noted as a cause of delayed graduation by Kolodner.) But the problem is actually worse than taking a reduced load – working so many hours outside of the classroom detracts from time that should be spent on homework, studies and projects. This reduced time to devote to studies can lead to poor, even failing, grades, which in turn leads to repeating classes. The cascading effects should be clear, as graduation is pushed out further and further into the future. Even if one can muddle through the program, GPAs can be destroyed, making it difficult to land that great job upon graduation.

If there ever was a case for co-op education, this is it. Let’s do the finances.

Let’s assume that you register for 12 credits per semester because you want to work 30 hours per week to pay for tuition and fees. You land a retail position paying minimum wage, or $11 per hour in Massachusetts, for a total of $330 per week, which will result in about $265 per week in take home pay. Over the course of one semester (roughly 16 weeks with exams), this will total $4240 of take home pay. Not bad – as over two semesters this will cover roughly 60% of the in state tuition and fees at UMass Lowell. Working full-time over the summer will cover the remainder.

But wait. Let’s assume for a minute that the work truly got in the way of studies, such that the 24 credits, already at least six shy of what is needed in a given year to graduate in four years, is really only 18 credits of work towards the degree, because you had to drop one class each semester. Those 12 credits (6 dropped and 6 not attempted) are now an additional semester on campus – wiping out nearly all the money earned over the year.

How about the co-op option? Take six months, and get a job in your field. In engineering, this can easily mean $20 per hour. At full time, this is $800 per week, or about $612 take-home per week. Let’s assume 22 weeks (need a little time off), such that the total take home pay is $13,464 – enough to cover one full year of tuition and fees (in state) at UMass Lowell (with a few dollars left over). For the other six months, you do not work, so you can take 18 credits during the semester and another 6-9 credits in the six week summer session, before you return to work. With no other distractions, odds are, you will complete those courses successfully.

The only tradeoff now is: do you want to graduate in four years? Or do you want to graduate debt free? If graduating in four years is important (and it is!), then the six-month position cannot be repeated (although an additional 3-month experience is possible) and summers are now dedicated to school. But the 9 months of work looks great on the resume and the roughly $20,000 earned will go a long way in paying down debt. If stretching the time to graduation is OK, then the six-month experience can be repeated numerous times, driving that debt down towards zero.

So, leave that barista job to someone else during the semester. Ace those classes, and land that great co-op job. The results will be evident in your pocket, and on your transcript.

Ready for Work: Scholarship, Leadership, and Work Experience

We recently hosted our Spring Career Fair, with over 200 companies descending on the Tsongas Center looking for talent. While surely a number of graduating students were looking to lock in their first job upon graduation, I always encourage sophomores, juniors, and even freshmen to take advantage of the opportunity to look at the job market and perhaps land a summer internship or co-op position. One can never start looking, or preparing, too early for landing that first job.

I have always advised my students that potential employers are looking for three attributes in future hires: (1) good scholarship; (2) demonstrated leadership; and (3) practical experience. Note that a Career Fair is a unique opportunity – an applicant has the chance to “explain” their resume to a company representative. In this day and age, many more job opportunities are presented online and the applicant merely presents a resume and cover letter. For this situation, it is critical that the applicant highlight (1), (2) and (3) clearly, as there may never be an opportunity to “explain” an item on the resume.

Item (1) is straightforward: getting into UMass Lowell is the first hurdle, as our Engineering program is highly respected by companies throughout the world. The next hurdle is succeeding academically, generally measured by grade point average (GPA). This is not easy, so one has to work hard – if it was easy, more students would pursue engineering degrees. (According to the U.S. Department of Education, National Center for Education Statistics, only 5.2% of B.S. degrees conferred in the United States in 2014-15 were in Engineering!) Do note, that if the GPA is subpar, the applicant must be ready to illustrate why, presumably through extensive off-campus commitments, such as work.

Item (2) requires that students take advantage of the University’s offerings in experiential learning. At Lowell, we have a number of opportunities for students to get involved, and lead. There are student clubs, teams and societies, each with a different mission and purpose, but all having the need for leadership. For example, engineering teams such as Design-Build-Fly, Collegiate Wind, Concrete Canoe, and Steel Bridge, to name a few, have deadlines throughout the year leading to the competitions. These require extensive planning and students must step forward and to keep the projects on schedule. Student clubs, such as those affiliated with a major (i.e., American Society of Civil Engineers, or ASCE), or an affinity group (i.e., Society of Women Engineers, or SWE), have an obligation to their membership to provide professional development opportunities, as well as some fun, through tours, speakers, travel, outreach and other events. Again, these activities take planning and execution such that many clubs and societies have extensive rosters of vice presidents to help spread the workload. This is what a company wants to see – leadership, not merely participation.

Item (3) is a bit of a double-edged sword. Companies want students with experience but students need experience to get a job. This is why it is so critical for students to look for opportunities early in their academic career – companies may require experience for a full-time position, but they are less stringent for summer intern or co-op options because they know that this is the entry point for most students.

So students, start early and remember, a three-pronged strategy is needed to land that dream job: scholarship, leadership, and work experience.

Choosing UMass Lowell

On Saturday, April 8, we will welcome hundreds of accepted students onto campus with family and friends to look at our College and University. It is an exciting time of year, although I know the decision of choosing a University can be daunting for a student and family.

I know I am biased, but it is hard for me to believe that there is a better value than UMass Lowell for any student interested in Engineering – especially for those from Massachusetts. Our programs are nationally ranked and ABET accredited, with companies all over the globe coveting our graduates (our placement rate was 96% in the College last year). But I believe it is the experiential learning opportunities that truly define a UMass Lowell education. At Lowell, students can be:

  • Competitors: Join a team and compete in concrete canoe, steel bridge, chemical car, SAE car, embedded systems, digital design, design-build-fly, solar house, wind energy and more!
  • Designers: Hang out in our 8500 ft.2 Makerspace and take napkin sketches to computer-aided-designs to prototypes to final products using the latest equipment, including 3D-Printers, Laser Cutters, CNC Lathes and Milling Machines.
  • Educators: The best way to learn something is to teach it to someone else. Our service-learning courses allow students to go into the community and teach STEM subject matter to middle and high school students.       This can be formalized into a teaching certificate through our UTeach program.
  • Innovators: Our DifferenceMaker curriculum cover the process of defining a problem, developing a solution, identifying a market, working in a team, and pitching a solution. Compete for real prize money to develop your product or service in our Prototyping Competition each fall and the Idea Challenge each spring.
  • Professionals: Take the necessary steps to becoming a practicing engineer by participating in our professional co-op program, internships, or industrial experiences. Furthermore, the interdisciplinary senior design option will allow you to solve a problem posed by an industrial sponsor.
  • Researchers: Explore cutting edge technologies in a variety of fields, including clean energy, nanomanufacturing, flexible electronics, composites, structural health monitoring, biomanufacturing, sensors, and smart transportation.

And this is really just a taste of being a RiverHawk. There is always something happening on campus to motivate further learning. It really is no surprise that publications such as Payscale.com, BestColleges.com and Forbes define us as a great value.

 

 

UMass Lowell Wins ADVANCE Grant

With great pride, I want to share that the National Science Foundation has awarded UMass Lowell an ADVANCE-IT grant for its proposal “ADVANCE: Institutional Transformation: Making WAVES: Disrupting Microaggressions to Propagate Institutional Transformation.” According to the proposal’s abstract, the goal is

“to create an academic environment that supports STEM women to achieve to their highest potential by disrupting interpersonal and institutional microaggressions that undercut their productivity and well-being. Despite increasing numbers, women faculty are still underrepresented in academic STEM, predominantly at higher ranks and in leadership. Recent research suggests that microaggressions, as a particular expression of subtle biases, have a powerful, cumulative negative impact on access to research support and advancement.”

The Institutional Transformation program WAVES (Women Academics Valued and Engaged in STEM) proposes to holistically tackle this critical barrier for women in STEM with interventions including surveys, an informational campaign, bystander training, alternative networks for STEM women, and increased transparency and accountability initiatives.

meg-sobcowicz-kline_opt_tcm18-38785Congratulations to the investigator team, including UMass Lowell Chancellor  Jacqueline Moloney, Ed.D.; Julie Chen, Ph.D.; Meg Bond Ph.D.; Marina Ruths, Ph.D.; and Meg Sobkowicz-Kline, Ph.D.

Dr. Sobkowicz-Kline, Plastics Engineering, will serve as Engineering’s liaison for the WAVES program. To date, $1.6 million has been awarded for this effort.