Robinson School Visit 1/26

In preparation for a Star Party on February 2, Dr. Silas Laycock, Dr. Viktor Podolskiy, and I traveled to Robinson Middle School on Thursday, January 26, armed with two telescopes and two large mirrors. The purpose of the visit was to allow students to practice with astronomical technology that they would encounter at an observatory. We worked with Ms. Syzmanoski”s, Ms. Sanborn’s, and Ms. Howell’s 8th grade science classes going over the different celestial objects that students would be able to see in the Winter sky. After talking about Venus, the Pleiades, and Betelgeuse, we went around and showed students how a reflecting telescope, lens telescope, and light in general, through the use of mirrors, work.

.

Students got the chance to look through the telescopes, try focusing telescopes, and asking any questions they had about the technology.

We hope that the students are excited to look at the stars and we know we are excited to continue our partnership with Robinson Middle School!

 

Tom

Kennedy College of Sciences 2nd Annual Block Party

The Active Astronomy Roadshow traveled to Cumnock Hall on North Campus to run a table at the Kennedy College of Sciences 2nd Annual block-party1Block Party! With a telescope and astronomy cards in hand, Silas, Andy, Sarah, and Tom set up activities for university students to play that would be used in our classroom activities. Students, faculty, and staff got to try their hand at ranking the planets, along with a few other everyday objects, by temperature, mass, gravity, and diameter with a glow in the dark star as a prize for players. Players used all kinds of methods to reason through the ordering of the objects and I personally learned a few new ways of thinking about how planets could be thought about. Participants also were able toblock-party3 point and focus our reflecting telescope at points around the hall to get a feel for the wonders of stargazing.The Block party was a great hit and we were able to spread the block-party4word about our local astronomy activities, the Schueller Observatory, LoCSST, and the HDSC all while having some fun. In the end, 11 individuals were interested in hearing more from us in the future and learning about how they can help out and 1 student even offered to help out with the previously stalled weather balloon project. Further, an astronomy club is now in the works and we hope that it is successful in its endeavors.block-party2

I hope to have some information about the outreach activities at local schools soon!

Tom

Astronomers from Poznan Observatory, Poland visit the Schueller

Recently Astronomers Krystof and Monica Kaminsky of the Poznan Observatory visited UMass Lowell. They spent the day at LoCSST and the Physics department, and presented a talk on their Global Astrophysical Telescope System (GATS).  We hope to collaborate the them in this project using the Schueller Telescope.

In the evening the Kaminskys along with guests including Dean of Sciences Mark Hines, and Assoc. Dean Supriya Chakrabarti, toured the Scheuller Observatory with Prof. Laycock, and enjoyed a dinner given by Susan Schueller in her lovely home.

Kaminsky_visit_good

Profs. Kaminsky & Kaminsky measure the surface motions of nearby stars using   telescopes equipped with high-resolution fiber-fed spectrographs, that they and their team designed and built.  Believe it or not, many (perhaps all to some degree)  stars (including our Sun) pulsate or vibrate constantly. By exploiting the doppler-effect the Kaminskys’ spectrographs are able to measure the velocity of the star’s surface as it pulsates. Many different pulsation modes can exist in a star simultaneously, (just like the vibrational modes of a violin or a guitar) and these vibrations reveal the interior structure of the star!

It turns out that a telescope at a single site can never capture a complete picture of the vibrations, which span a huge range of timescales, because a star is only really observable for about 3 hours as it  passes though the clean clear zenith region of the sky above our heads. The Kaminskys’ solution is to put spectrographs in different time zones at similar  latitude so a single star can be observed continuously for many hours.  The Schueller observatory is located 5 hours West of Poznan, and 3 hours East of Arizona where the other telescope is located – plugging a big hole in the coverage zone.

The Kaminskys seemed impressed with the Schueller observatory and recommended that we invest in an automatic opener, and pursue remote operation, which has been the key to making their own observatories so productive. After that, we will work together to build a radial velocity spectrograph following their design. – And start taking the pulse of the stars!

 

 

 

Spacecraft, Cool Planets, and Magnetism on the Sun

Recent UMass Lowell Physics graduate Kate Oram came to the Bres’ with Tom, Andy and Prof. Laycock. Kate described her amazing work at UMass, and now the engineering company “L3” where she works as an optical engineer. Kate designs and builds spacecraft that hunt for alien planets, scan the earth for forest fires, study the sun, and one has even flown to Pluto!

Kate_and_MrsWestgates_ClassPlanetaryThermometer

Mrs Westgate’s class  made a giant thermometer and put the different planets in order from coldest to hottest. They even added in some ice cubes and soup for comparison!

Andy_Magnets_MrsHoiseth_Class

Andy and Mrs Hoiseth’s class explore the invisible patterns of magnetic fields.

The magnets are hidden beneath the table, and scattering iron powder reveals them, and a whole slew of strange swirls and lines. We discussed how birds can “see” these patterns and use them to find their way on migration.

Solar_telescope_Kate_Bres SunHalphaMed

Kate helps Mrs Hoiseth’s class look at the Sun through  a special telescope. They see loops of flame leaping from the Sun’s surface, and dark spots where the surface is cooler. Both are patterns caused by the strong magnetic field of the Sun! Its just like the iron power patters -but waaaay hotter…….

 

 

Exploring the Sun and Planets in Newburyport

Hello Everyone,

Today, Prof. Laycock, Andy, and myself ventured back to Bresnahan Elementary School in Newburyport to lead outreach activities in the classes of Mrs. Westgate and Mrs. Hoiseth. In addition to the three of us, recent UML grad Kate Oram took time out of her busy schedule to join us for our activities and to talk to the students of both classes about all the fascinating work she is doing in optical engineering. For the activities, in Mrs. Westgate’s class, we had the students create a scale model of the solar system. They had to pick out which balls represented which planet, order themselves based on which planet they were holding, and then space themselves out. Throughout we got the opportunity to discuss why it is important to make models in science and how the scientific method is present even in something like a scale activity. From there, we had students use a giant thermometer to figure out the temperature of the planets and how they compare to every day objects like ice and soup. With Mrs. Hoiseth’s class, we talked about magnetism. Students saw a demo with iron filings and magnets that showed the effects of magnetism on the filings. From there, students made compasses their own. The compasses were made out of cork and a pin that the students magnetized themselves. The cork was then floated in water to show how it could be used as a compass. To wrap up our activity on magnetism, students got the opportunity to look through a solar telescope to see the effects that a magnetic field can have. We would like to thank Mrs. Westgate and Mrs. Hoiseth for allowing us to lead our activities with their classes and Kate for coming with us to share her knowledge and expertise with the students. Pictures to come soon!

Until next time,

Tom

Telescope Making at Lawrence High School

Hello Everyone,

On March 10, Andy and I had the pleasure of assisting Mr. Johnny Gelsomini’s Astronomy Class with a telescope making activity. The activity had the students measure the focal length of each lens needed for the telescope, the objective lens and the eyepiece. From there the students were tasked with an engineering challenge where they worked in groups to make a telescope using two cardboard tubes of different sizes, a sheet of foam-like material, the two lenses, extra cardboard, caps for the cardboard tubes, scissors, and tape. While each group had the same basic shape for the telescope, they all had slightly different methods of securing the lenses in place. Some used extra cardboard and tape while others used the caps for the cardboard tubes and everything in between. Once students got the chance to look around with their telescopes, we talked about why the images seen were upside-down and how magnified the objects being seen were. We were so impressed with the problem-solving skills that the students were displaying while constructing their telescopes and the knowledge that they already had about telescopes and light. We would like to thank Mr. Gelsomini for allowing us to come in and his students for being amazing. We look are looking forward to helping out again soon!

Tom

Outreach Activities at Bresnahan

Hello Everyone,

Today, Prof. Silas Laycock, Andy, and I had the pleasure of travelling to Bresnahan Elementary School in Newburyport for an outreach activity with Mrs. Hoiseth’s 2nd grade classroom. Our morning with the class consisted of two main activities: making a scale model of our solar system and creating a thermometer with the temperatures of the planets. For the solar system, the students had to try and figure out what object was representing which planet and then order and space out themselves before learning the actual distances of the planets. The thermometer activity had students use their prior knowledge about everyday objects, such as soup and ice, and the solar system to order the planets by temperature on our giant thermometers. To demonstrate why Venus gets hotter than Mercury, we illustrated the greenhouse effect with a water bottle and alka-seltzer tablets under a heat lamp. During our few down moments (snack time), we even got the opportunity to talk about what it might smell like on other planets. We were so impressed with how smart the kids were and how much they had learned in about space in the hour and a half that we were there. We would like to thank the school and Mrs. Hoiseth for everything and are looking forward to helping in the future.

More updates to come,

Tom

Astronomy Outreach Curriculum

Hello everyone,

In order to keep track of all of our outreach activities, we have created a wiki page with all of the different lessons that we have written. The wiki page can be accessed from the link provided below. Check back often as we will continue updating the activities! We are hoping to add in pictures, downloadable pdfs, and adding in more potential activities.

-Tom

http://active-astronomy-road-show.wiki.uml.edu/home

Pointing to the Horsehead

While taking the telescope for a shake-down cruise last week, students Pat and Logan obtained these images of the iconic Horsehead Nebula in Orion. Dark clouds of dust are silhouetted against a glowing background of hydrogen gas.

Horsehead-4panel

Main item on the night’s list of activities was learning how to create a multi-star pointing model for the telescope. The scope slews automatically to a series of locations in the sky, and at each one, an image is taken with the CCD camera, the stars in the image are automatically identified by software (practically by magic to someone who remembers doing this by hand not so long ago!), and the exact pointing of the scope is computed.

After 20 or so positions in the sky have been mapped in this way the software computes the pointing model. This is a big matrix that maps the telescope mounts drive motors and encoders onto the celestial sphere. It takes care of flexure in the mount, discrepancies in the motor drives, gears, and a host of other factors.

End result?  – we commanded the scope to find the Horsehead Nebula, took a long exposure in the Red filter, and there is was!

If you look at the 4 panels in the image, you’ll notice the at the Horsehead is only visible in certain wavelengths of light, and only with very long exposure times. So being able to point and track is essential