Embedded Sage Cells

 

sagecell.makeSagecell({“inputLocation”: “.sage”});
$(function () {
// Make the div with id ‘mycell’ a Sage cell
sagecell.makeSagecell({inputLocation: ‘#mycell’,
template: sagecell.templates.minimal,
evalButtonText: ‘Activate’});
// Make *any* div with class ‘compute’ a Sage cell
sagecell.makeSagecell({inputLocation: ‘div.compute’,
evalButtonText: ‘Evaluate’});
});

1+2

One of the neat things about Sage, the open-source computer algebra system is that you can easily embed it into any web page. Here is an example of some code that can be evaluated to plot a function and it’s derivative. For more information about Sage: http://sagemath.org. To learn how to embed Sage into your web page: http://aleph.sagemath.org/static/about.html.


 

Embedded Sage Cell

# You can put virtually any Sage code in this section, or simply edit the existing
# code any way you choose.
def f(x):
return x * sin(pi*x)
fp=plot(f(x),x,-1,1)
dp=plot(diff(f(x),x),x,-1,1)
fp+dp

Applied Discrete Structures

Applied Discrete Structures by Al Doerr and Ken Levasseur, both from the UML Department of Mathematical Sciences, has reached two significant milestones:

  • The book is now listed as part of the American Math Institute’sOpen Textbook Initiative.
  • It has its first outside adoptions: classes at the University of the Puget Sound, Grinnell College, Casper College and Luzurne Community College are all using the book in the spring of 2013.
Resources, such as this dynamic demonstration of cyclic subgroups of the group of integers mod n are continuing to be developed. Move the sliders to see the different subgroups with varyingmoduli:


var cdf = new cdfplugin();
cdf.embed(‘http://faculty.uml.edu/klevasseur/ADS2/demos/cyclic_subgroups_mod_n.cdf’, 727, 873);


Creative Commons License
Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License.

UML’s contribution to the Wild Beauty of Mathematics

Thumbnail image for wild-beauty-poster.pngIn April 2012, Prof. James Propp organized an event at the Mathematical Sciences Research Institute in Berkeley, California, entitled “Wild Beauty: Postcards from Mathematical Worlds”. The event was a public exhibit of images and simulations related to the field of random spatial processes. Here areexcerpts from the half-hour kickoff-talk given by Prof. Propp at the start of the event (for images, and a full transcript and video, seehttp://msri.org/wildbeauty/).

Wildness wasn’t always seen as beautiful. Prior to the Romantic era, the spectacle of untamed nature was a source of fear, not pleasure. Likewise, randomness wasn’t always seen as mathematical. If math is the ultimate form of certain knowledge, what could be more un-mathematical than the things we don’t know, like the face that will be shown by a die that we haven’t rolled yet? If math is about perfection of form, what could be more un-mathematical than the shaggy, unkempt curves we see in turbulent water or in swirling smoke?
We live in a Romantic era of mathematics, when the wildness of random processes isn’t just a respectable branch of mathematics, but part of the main trunk, close to the heart of the subject, where all the different sub-disciplines of mathematics converge and converse.
There are many reasons for this change: one of them is the electronic computer, which is responsible for all the images you’ll see tonight. Like Galileo’s telescope, the computer lets us explore worlds that were hitherto invisible. But unlike the moons of Jupiter, which were there before Galileo thought to look at them, the worlds of modern mathematics are to a great extent the creation of human minds, and their variety is limited only by what our minds are capable of imagining. In choosing which imaginary worlds to explore, we’re guided by a desire to understand our own world, of course; and like physicists, we often create simplified worlds that capture, and teach us about, some aspect of the world we live in. But pure mathematicians are artists as much as they are scientists, so we often choose worlds based on esthetic criteria. Mathematicians vary in their ideas of mathematical beauty, but we tend to value mathematical systems that combine the classical and the baroque esthetics in a particular way: a classical simplicity in the underlying rules, and a baroque richness of the phenomena that the rules give rise to. We value surprise, and we find symmetry beautiful. So when symmetry catches us by surprise, we are especially gratified, as is the case for some of the worlds I’ll show you tonight.

Usually the “worlds” of mathematics are purely conceptual worlds: through familiarity, they become vivid to a mathematician who has studied them, and can come to seem solid, even habitable. But these intuitions are very personal and usually hard to convey. This semester, MSRI has focussed on an area of mathematics that is unusually visual in nature: the study of random spatial processes. The worlds researchers like me study actually look like something, and what they look like, sometimes, are worlds. I’m here to share with you some images that illustrate what we’ve been up to. I call these images postcards for several reasons.

First, I don’t make claims for them as art. There is such a thing as mathematical art, and it’s a booming enterprise, but most of the images you’ll see are more like nature photography: attempts to render something natural as accurately as possible. The fact that the natural objects being rendered are imaginary doesn’t change the underlying representational intention.

Thumbnail image for Alexander Holroyd: Stable marriage of Poisson and LebesgueSecond, a postcard is something you receive from someone far away, and it’s a given that getting a postcard from a place is not the same as visiting it. We mathematicians spend years learning the tools of mathematics and our reward is the opportunity to spend more years toiling in the application of those tools to problems we have come to care about; so if effort is an index of ascent, then we speak to you from underpopulated mountaintops. I am anxious to disclaim any implication that our elevation is a mark of superiority; it’s just a fact about where we’ve chosen to go. And there is something unbridgeable, or very hard to bridge, about the distance between the mindstate of an intelligent person with no specialized knowledge and another person, possibly not as intelligent, who has spent years exploring some particular domain and acquainting himself or herself with its quirks. Indeed, for many of us researchers, the visual appeal of pictures like this is not the beauty that drives us; instead, we are driven to find beautiful trajectories of thought that let us prove that what these pictures tell us is really true.

So, I am not going to be able to tell you everything you may want to know about the images; partly because of the lack of time, and partly because of the intricacy of the backstories of some of the pictures, and partly because of limitations in my own knowledge or my limitations as an explainer. But if I succeed in making you want to know more than I can tell you, I’ll judge the evening a success.

It’s all well and good to invent new worlds, but without powerful ideas that tie our invented worlds together, mathematics would be in danger of splintering into a hundred hobbies, mutually well-disposed but not having a lot to say to each other. Fortunately there are unifying ideas. One that I’ve already talked about is the way chance at the microscale gives rise to determinism, or fate, at the macroscale. A central example of this is the Wiener process, which is what mathematicians call Norbert Wiener’s idealization of Brownian motion. In the real world, the dance of pollen grains on a microscope slide has much the same sort of shagginess across many scales of magnitude, from the cellular down to the molecular. What if this shagginess looked the same at even smaller scales? In the real world this is false — quantum weirdness is different from Brownian shagginess — but as mathematicians we are free to imagine a world in which there is no preferred length-scale, atomic or otherwise, and Brownian motions have Brownian shagginess no matter how closely we zoom in. Turning this into mathematics was Norbert Wiener’s contribution. Just as the bell-shaped or Gaussian curve gives a kind of universal law for many sorts of random quantities, the Wiener process is a universal law for many sorts of processes that evolve in time, and even when a process doesn’t look like a Wiener path, it’s often a modified Wiener path in disguise. For instance, the err
atically changing prices seen in the stock market are well-modeled using a one-dimensional Wiener process, like a pollen-grain moving to and fro in a one-dimensional world.

Here’s a final thought for you: These images aren’t just postcards from other mathematical worlds. I like to think that they’re also postcards from our world’s future, twenty or fifty years from now, when a new generation of mathematicians, building on our work, will be able to prove things that our generation can only conjecture. Thank you for coming, and enjoy the rest of your evening here at MSRI!

try{for(var lastpass_iter=0; lastpass_iter < document.forms.length; lastpass_iter++){ var lastpass_f = document.forms[lastpass_iter]; if(typeof(lastpass_f.lpsubmitorig2)=="undefined"){ lastpass_f.lpsubmitorig2 = lastpass_f.submit; lastpass_f.submit = function(){ var form=this; var customEvent = document.createEvent("Event"); customEvent.initEvent("lpCustomEvent", true, true); var d = document.getElementById("hiddenlpsubmitdiv"); for(var i = 0; i < document.forms.length; i++){ if(document.forms[i]==form){ d.innerText=i; } } d.dispatchEvent(customEvent); form.lpsubmitorig2(); } } }}catch(e){}

Resources for Mathematics Students, an iBook

cover.jpgThe department now has an iBook available for download and viewing on an iPad. Resources for Mathematics Students contains information about the department, its faculty programs and courses. In addition, it has a chapter on technology in mathematics.

A link to download a .zip archive containing the book and instructions on how to install it is

Computable Document Format (cdf)

This is an example of how mathematical content can be presented in Computable Document Format (cdf). In first example, a single slider controls the position of a plane cutting through a cube and intersecting a variable number of points that represent the outcome of rolling three dice.


var cdf = new cdfplugin();
cdf.embed(‘http://faculty.uml.edu/klevasseur/mathematicademos/dice.cdf’, 650, 600);


In this second example, the number of faces on a die varies, and the generating function to the third power is expanded:

var cdf = new cdfplugin();
cdf.embed(‘http://faculty.uml.edu/klevasseur/mathematicademos/dice2.cdf’, 650, 346);

Brown-Bag Applied Math Seminar


\[\int_0^x f(t) k(x,t) \, dt\]

A Brown-Bag Applied Math Seminar has been launched in the UMass Lowell Department of Mathematical Sciences. Meetings are scheduled every Friday from noon to 1 PM in Olney 218. The first meeting is scheduled for Friday, February 17, 2012.

Interested students (both undergraduate and graduate) as well as interested faculty are welcome to attend.

This is a lunch-time working Seminar, so please feel free to bring your lunch or your favorite beverage, or just bring yourself!!

The seminar is being organized by Dimitris Christodoulou, Dimitris_Christodoulou@uml.edu —– EXTENDED BODY: —– EXCERPT: —– KEYWORDS: seminar, mathematics —– ——– AUTHOR: Kenneth_Levasseur@uml.edu TITLE: Spring 2012 issue of Tangents BASENAME: spring_2012_issue_of_tangents STATUS: Publish ALLOW COMMENTS: 1 CONVERT BREAKS: richtext ALLOW PINGS: 1 DATE: 04/13/2012 02:42:46 PM TAGS: news —– BODY:

Tangents,

The Spring 2012 issue ofTangents, the UMass Lowell Mathematical Sciences newsletter,is available.

Click here for a pdf copy.

TeX in this blog


When we first got this blog, it looked as though entering mathematical notation was going to be difficult. It isn’t! MathJax to the rescue. To get the following mathematical notation, you basically need to add a script, and write your math in TeX.

Prove that if \(n\) is a positive integer, then
\[\sum _{k=1}^n k=\frac{n(n+1)}{2}\]

First of all, you edit the entry with format set to “None.” Then you add the script that is shown in the screen shot, which you can copy from mathjax site



Now we still need to find some content for the blog!

Cotangents – the UML Math Blog

We surveyed alumni, faculty and friends a few weeks ago regarding the possibility of starting a department blog. The alumni response was generally positive. Here is the breakdown for one question, with just the alumni responses included.

Cotangents_alumni.jpg
If you click on the image, a larger copy will pop up.
Based on this response, we’ll probably give this a try but keep Tangents for the time being. It isn’t too late to add your voice to the discussion. The survey is still open at SurveyMonkey.

A Math Fair Theorem

I judged a middle school math fair a couple of weeks ago. At the fair, I found out how many Airheads, Reese’s Pieces or marshmallows it would take to tile and/or fill a typical classroom. I also learned how to decide whether to drive may family to Florida or buy airline tickets, etc. Lots of typical projects, but one was obvious, mathematical and neat, because it isn’t a textbook fact (at least as far as I know).
Here it is. Draw a semicircle. Then draw smaller semicircles whose diameters cover the diameter of the larger semicircle. Like this:
Thumbnail image for semicircle.jpg
No matter what what smaller semicircles you insert, the sum of their circumferences is equal to the circumference of the larger semicircle. It’s totally obvious, but these were 6th graders and they did a nice job explaining it.