Defeating Student Debt through Co-op

The New York Times published an interesting article by Meredith Kolodner this week, entitled “6 Reasons You May Not Graduate on Time.” The author consulted a number of higher education professionals to define the leading causes. I’d like to focus on the first cause listed, “Working Overtime.”

According to the article, about 40 percent of undergraduates work 30 hours per week or more. Informal surveys in our classes support this number. This is a noble endeavor, as the student’s goal is generally to pay for College, including tuition, fees and living expenses. As noted in an earlier blog, the average debt of a student is around $34,000 upon graduation. This average amount of student debt is up nearly 70 percent in the last decade, according to a recent article in the The Wall Street Journal.

The problem is that working nearly full-time makes it difficult for a student to complete the required number of credits each semester to graduate on-time. That is, instead of taking 15 credits or more in a semester, students take a lighter load so they can work more hours. (Taking less than 15 credits a semester is also noted as a cause of delayed graduation by Kolodner.) But the problem is actually worse than taking a reduced load – working so many hours outside of the classroom detracts from time that should be spent on homework, studies and projects. This reduced time to devote to studies can lead to poor, even failing, grades, which in turn leads to repeating classes. The cascading effects should be clear, as graduation is pushed out further and further into the future. Even if one can muddle through the program, GPAs can be destroyed, making it difficult to land that great job upon graduation.

If there ever was a case for co-op education, this is it. Let’s do the finances.

Let’s assume that you register for 12 credits per semester because you want to work 30 hours per week to pay for tuition and fees. You land a retail position paying minimum wage, or $11 per hour in Massachusetts, for a total of $330 per week, which will result in about $265 per week in take home pay. Over the course of one semester (roughly 16 weeks with exams), this will total $4240 of take home pay. Not bad – as over two semesters this will cover roughly 60% of the in state tuition and fees at UMass Lowell. Working full-time over the summer will cover the remainder.

But wait. Let’s assume for a minute that the work truly got in the way of studies, such that the 24 credits, already at least six shy of what is needed in a given year to graduate in four years, is really only 18 credits of work towards the degree, because you had to drop one class each semester. Those 12 credits (6 dropped and 6 not attempted) are now an additional semester on campus – wiping out nearly all the money earned over the year.

How about the co-op option? Take six months, and get a job in your field. In engineering, this can easily mean $20 per hour. At full time, this is $800 per week, or about $612 take-home per week. Let’s assume 22 weeks (need a little time off), such that the total take home pay is $13,464 – enough to cover one full year of tuition and fees (in state) at UMass Lowell (with a few dollars left over). For the other six months, you do not work, so you can take 18 credits during the semester and another 6-9 credits in the six week summer session, before you return to work. With no other distractions, odds are, you will complete those courses successfully.

The only tradeoff now is: do you want to graduate in four years? Or do you want to graduate debt free? If graduating in four years is important (and it is!), then the six-month position cannot be repeated (although an additional 3-month experience is possible) and summers are now dedicated to school. But the 9 months of work looks great on the resume and the roughly $20,000 earned will go a long way in paying down debt. If stretching the time to graduation is OK, then the six-month experience can be repeated numerous times, driving that debt down towards zero.

So, leave that barista job to someone else during the semester. Ace those classes, and land that great co-op job. The results will be evident in your pocket, and on your transcript.

Choosing UMass Lowell

On Saturday, April 8, we will welcome hundreds of accepted students onto campus with family and friends to look at our College and University. It is an exciting time of year, although I know the decision of choosing a University can be daunting for a student and family.

I know I am biased, but it is hard for me to believe that there is a better value than UMass Lowell for any student interested in Engineering – especially for those from Massachusetts. Our programs are nationally ranked and ABET accredited, with companies all over the globe coveting our graduates (our placement rate was 96% in the College last year). But I believe it is the experiential learning opportunities that truly define a UMass Lowell education. At Lowell, students can be:

  • Competitors: Join a team and compete in concrete canoe, steel bridge, chemical car, SAE car, embedded systems, digital design, design-build-fly, solar house, wind energy and more!
  • Designers: Hang out in our 8500 ft.2 Makerspace and take napkin sketches to computer-aided-designs to prototypes to final products using the latest equipment, including 3D-Printers, Laser Cutters, CNC Lathes and Milling Machines.
  • Educators: The best way to learn something is to teach it to someone else. Our service-learning courses allow students to go into the community and teach STEM subject matter to middle and high school students.       This can be formalized into a teaching certificate through our UTeach program.
  • Innovators: Our DifferenceMaker curriculum cover the process of defining a problem, developing a solution, identifying a market, working in a team, and pitching a solution. Compete for real prize money to develop your product or service in our Prototyping Competition each fall and the Idea Challenge each spring.
  • Professionals: Take the necessary steps to becoming a practicing engineer by participating in our professional co-op program, internships, or industrial experiences. Furthermore, the interdisciplinary senior design option will allow you to solve a problem posed by an industrial sponsor.
  • Researchers: Explore cutting edge technologies in a variety of fields, including clean energy, nanomanufacturing, flexible electronics, composites, structural health monitoring, biomanufacturing, sensors, and smart transportation.

And this is really just a taste of being a RiverHawk. There is always something happening on campus to motivate further learning. It really is no surprise that publications such as Payscale.com, BestColleges.com and Forbes define us as a great value.

 

 

Mechanical Engineering junior shaping minds and changing lives in Boston’s South End

Samariah (Sammy) Jacobs, a UMass Lowell Mechanical Engineering junior, is doing amazing work getting inner city Boston youth creatively engaged in technology and engineering, as a mentor in the 14 year old Learn 2 Teach, Teach 2 Learn program at the South End Technology Center @ Tent City. 

Blinkieelectricl2tt2l

Sammy, fellow L2T/T2L college mentors and youth teachers just won an international Google RISE award for their work and the National Science Foundation is studying their work as national best practices in a Digital Literacies research project.  

Each year, 36 teenage youth teachers, who are selected to represent Boston, learn 6 different technology and engineering modules, build projects that solve community issues, then offer free 3-4 week STEAM camps for 700+ Boston elementary and middle school youth at 25 community organizations who would not otherwise offer STEM enrichment.  

SquishaySoccerSamRafaelSammy was a youth teacher when she was in high school and now is in her second year of working as a college mentor in the program.  Last year, Sammy developed a solar energy activity where youth soldered up solar circuits to power the propeller on their own lasercut wood airplane.  She just developed two activities and began teaching them to new youth teachers:  Teh Squish-ay (using conductive dough to teach electricity and circuits with LEDs, motors, tilt switches, photocells) and Blinkie Paper (uses linkages with circuit stickers to create light up cards).  

 

My sincere appreciation to Dr. Susan Klimczak, L2T Director of Special Programs, for calling attention to Sammy’s inspiring community contributions. She is a shining example of just one of the many reasons why I am so proud to be Dean of the College of Engineering. Look for more information on Sammy and her work at Tent City in future posts.