Engineering and Design: Ever Connected

It is hard to believe that the smartphone revolution started just 10 years ago this year, with Apple having delivered its first iconic iPhone in 2007. I often have trouble remembering my life before my first smartphone. I vaguely remember my Nokia 3210 and Motorola Razor, while also owning a digital camera and a digital calendar (PDA). I also vaguely remember a time when I could not access my email 24/7. (I’m not here to debate whether that is progress!) Continue reading

You’ve graduated… and now you need to decide on a job!

Jeffrey Sparshott of The Wall Street Journal recently reviewed an interesting article in the National Bureau of Economic Research working paper series by John Haltiwanger, Henry Hyatt, Lisa B. Kahn, and Erika McEntarfer concerning job place mobility. The conclusion, which perhaps was not surprising, was that small companies were viewed more as potential “poachers” of talent from larger companies, rather than vice versa. To me, this leads to an interesting question for graduates looking to enter the workforce – timely as we just held commencement ceremonies a few weeks ago.

What job is the best fit for me?

Honestly, this is one of my favorite questions to discuss with soon to be graduates: First off, it’s a great question because it means that the soon to be graduate is in a great situation of having multiple job offers. Second, it’s a great question because there is no right answer – but there are surely many aspects to consider which impact people differently. These aspects include location, job title, salary, industry, and, yes, company size, which is often related to culture.

So the question to ponder here is, “What is the better first job, one with a small company – such as a start-up, or one with a large company that is well established?” Again, there is no right answer, but many aspects to consider.

With a large company, there is likely to be more stability, as the company will (generally) have its funding in order and thus can concentrate on its core business. Start-ups are usually in a more precarious position with regards to funding, and thus, their employees are generally at a higher risk of turnover or job loss. Note: large firms are not immune to this, especially firms such as defense contractors that rely on winning government contracts – a lost contract can also mean lost jobs. But in general, large firms tend to be more stable. This may be important if one has obligations and must financially care for dependents.

Of course, the counter to stability can be exciting – working to stay in business can be an exhilarating experience. And for taking the risk, employees are often compensated with stock options such that if the company does make it – the employees still receive a financial “buffer”.

Another factor to consider is professional development. Large companies often have well-established programs that provide employees an opportunity to improve their current job performance, as well as benefit their careers in general. Such training may be “in-house” – soft-skills programs overseen by professional trainers or human resource teams. Some companies may choose to partner with universities to provide training that can lead to certifications and advanced degrees. Many firms may cover the cost of tuition completely (or a percentage), assuming the employee succeeds in the coursework (often measured by the resulting grade).

Small companies, for reasons already noted, do not generally have these training programs in place. However, the training they offer can be equally valuable – on the job training. A strong argument in support of taking a job at a small company is that one will generally have the opportunity to wear “many hats” while at the firm. A budding engineer may get to work on various projects while also selecting and validating potential vendors – a task that normally occurs through a sourcing department in a big company. It may also mean that a civil engineer hired to do some structural analysis will also be writing computer code to implement solutions – again, a task that may be handed off to a software engineering department at a bigger firm. Small company job seekers need to be prepared for the potential diversity in their job tasks, which can be enjoyable. However, one may never achieve the “depth” of a position that they desire.

One “myth” that I believe does exist is that only smaller companies are looking for employees with entrepreneurial mindsets. While smaller companies undoubtedly look for these traits in employees, it should not imply that large companies do not seek employees with these skills. Large companies need similarly thinking employees in order to forge new areas for business, whether it is new product development or expanding current products into new markets. These types of “moves” require thinking that is often out of the box, or entrepreneurial. This is why our Chancellor started the DifferenceMaker program at UMass Lowell – to allow every student to engage in entrepreneurial endeavors during their time on campus.

In Engineering, we have expanded these options to include a prototyping competition, student club competitions, and externally sponsored senior design projects.

An entrepreneurial mindset will help with any future company – whether you are the first, second, or 1000th employee at the firm.

The Perfect Capstone Experience

ABET, formerly known as the Accreditation Board for Engineering and Technology, requires an integrative experience for all accredited programs. Specifically, according to abet.org:

Baccalaureate degree programs must provide a capstone or integrating experience that develops student competencies in applying both technical and non-technical skills in solving problems.

To me, the key to this experience is the application of both technical and non-technical skills. Interestingly, when employers are asked to rank the importance of different skills for new workers, they generally focus on non-technical skills. In a recent survey of employers, the National Association of Colleges and Employers (NACE) ranked leadership; ability to work in a team; communication skills (written); problem-solving skills; communication skills (verbal); strong work ethic; and initiative, ahead of quantitative and technical skills in terms of importance.

This is why it is critical that students gain experience during their schooling, and why I champion co-ops and internships. However, if designed properly, the capstone experience that is required by ABET provides another opportunity to develop integrated technical and non-technical skills. The key ingredients to these capstone projects are:

  • Complex design problem defined by external stakeholder and faculty mentor.
  • Teams of interdisciplinary teams working towards a solution.
  • Significant and ongoing opportunities for written and oral communication between the student teams, mentor and stakeholder.

I truly believe that the best projects come from outside the ivory tower. This is not to say that a Professor cannot define a great project for a student team to tackle – surely they can. However, they cannot provide an “outsider’s perspective” on the provided solution. That is, if a problem is defined by an external stakeholder (i.e., company, government entity, non-profit agency, etc.) that has a vested interest in the solution, then the students will be required to communicate the development of the solution over time with that entity. This is an important skill for students to develop – even engineers have to learn to “sell” their solutions, to co-workers, administrators, and clients. Furthermore, this generally requires both written and oral communication. (Note: it is assumed that the design problem posed by an external stakeholder is properly vetted and scoped, and that a faculty mentor will also work with the team.)

Our Electrical and Computer Engineering (ECE) program has been working with non-profit agencies for years through its Assistive Technology Program. Through these projects, students develop technological solutions for people in need (i.e., physical or learning disabilities, etc.). The program continues to grow in scope, with projects starting to reach beyond just ECE capabilities.

Other Departments work with external partners too. Our Civil and Environmental Engineering Department has completed projects with the Massachusetts State Police while our Mechanical Engineering Department has completed projects with the National Parks Association. ME has also partnered with Physics to work on satellite design projects for NASA.

Turning to industry for that “outsider’s viewpoint”, we launched a new Interdisciplinary Senior Design program two years ago with great success. This year, we ran 16, year-long projects for Computer, Electrical, Mechanical and Plastics Engineering majors with sponsors that included Analog Devices, BAE Systems, Brooks Automation, Dell EMC, MACOM, MKS Instruments, Nypro (A Jabil Company), Raytheon, Skyworks, Symbotic and UTC Aerospace Systems. In general, the students proposed a solution in the first semester (after significant research) and built a prototype in the second semester.

While the solutions were great, I was more excited about the ongoing communications during the semester. The student teams were required to write a memo each week, detailing the advances for the week, next steps, and current (or potential future) concerns. This provided a running development log (augmenting project management plans as well as student engineering notebooks) and introduced the concept of risk analysis to students (by forcing them to identify current or potential concerns). It also served as a basis for weekly discussions between the students, the stakeholder, and the faculty mentor.

In addition to the memos and engineering notebook logs, the students were required to write multiple reports, develop a summary poster, and deliver numerous presentations. The final presentations were delivered in front of all teammates, classmates, faculty advisors, and stakeholder liaison engineers. It was the perfect culminating experience to the capstone program for this year. And it illustrated that a properly defined and executed capstone design project can advance those skills identified by NACE to be highly desirable by industry.

 

 

Choosing UMass Lowell

On Saturday, April 8, we will welcome hundreds of accepted students onto campus with family and friends to look at our College and University. It is an exciting time of year, although I know the decision of choosing a University can be daunting for a student and family.

I know I am biased, but it is hard for me to believe that there is a better value than UMass Lowell for any student interested in Engineering – especially for those from Massachusetts. Our programs are nationally ranked and ABET accredited, with companies all over the globe coveting our graduates (our placement rate was 96% in the College last year). But I believe it is the experiential learning opportunities that truly define a UMass Lowell education. At Lowell, students can be:

  • Competitors: Join a team and compete in concrete canoe, steel bridge, chemical car, SAE car, embedded systems, digital design, design-build-fly, solar house, wind energy and more!
  • Designers: Hang out in our 8500 ft.2 Makerspace and take napkin sketches to computer-aided-designs to prototypes to final products using the latest equipment, including 3D-Printers, Laser Cutters, CNC Lathes and Milling Machines.
  • Educators: The best way to learn something is to teach it to someone else. Our service-learning courses allow students to go into the community and teach STEM subject matter to middle and high school students.       This can be formalized into a teaching certificate through our UTeach program.
  • Innovators: Our DifferenceMaker curriculum cover the process of defining a problem, developing a solution, identifying a market, working in a team, and pitching a solution. Compete for real prize money to develop your product or service in our Prototyping Competition each fall and the Idea Challenge each spring.
  • Professionals: Take the necessary steps to becoming a practicing engineer by participating in our professional co-op program, internships, or industrial experiences. Furthermore, the interdisciplinary senior design option will allow you to solve a problem posed by an industrial sponsor.
  • Researchers: Explore cutting edge technologies in a variety of fields, including clean energy, nanomanufacturing, flexible electronics, composites, structural health monitoring, biomanufacturing, sensors, and smart transportation.

And this is really just a taste of being a RiverHawk. There is always something happening on campus to motivate further learning. It really is no surprise that publications such as Payscale.com, BestColleges.com and Forbes define us as a great value.

 

 

UMass Lowell Wins ADVANCE Grant

With great pride, I want to share that the National Science Foundation has awarded UMass Lowell an ADVANCE-IT grant for its proposal “ADVANCE: Institutional Transformation: Making WAVES: Disrupting Microaggressions to Propagate Institutional Transformation.” According to the proposal’s abstract, the goal is

“to create an academic environment that supports STEM women to achieve to their highest potential by disrupting interpersonal and institutional microaggressions that undercut their productivity and well-being. Despite increasing numbers, women faculty are still underrepresented in academic STEM, predominantly at higher ranks and in leadership. Recent research suggests that microaggressions, as a particular expression of subtle biases, have a powerful, cumulative negative impact on access to research support and advancement.”

The Institutional Transformation program WAVES (Women Academics Valued and Engaged in STEM) proposes to holistically tackle this critical barrier for women in STEM with interventions including surveys, an informational campaign, bystander training, alternative networks for STEM women, and increased transparency and accountability initiatives.

meg-sobcowicz-kline_opt_tcm18-38785Congratulations to the investigator team, including UMass Lowell Chancellor  Jacqueline Moloney, Ed.D.; Julie Chen, Ph.D.; Meg Bond Ph.D.; Marina Ruths, Ph.D.; and Meg Sobkowicz-Kline, Ph.D.

Dr. Sobkowicz-Kline, Plastics Engineering, will serve as Engineering’s liaison for the WAVES program. To date, $1.6 million has been awarded for this effort.

FRC5962 “perSEVERE” shows First Robotics Competition they came to play

Alumnus Mike Johnston is at the culmination of an incredible rookie year with Merrimack Valley Robotics and the FRC 5962 team. At the start of this school year his team was just a small group of local kids hoping to add FIRST into their robotics club project. With 25 days before registration was due for the 2016 season, they were informed that the team could not be supported by the school. They were homeless, but, they were determined.

The students shifted their focus, and aimed to create a team that was a collaboration of numerous local communities – rather than one town. Full of passion, they came to UMass Lowell, and asked for help. We were happy to offer our new Makerspace, which included many of the tools that would be needed to construct the robot.  FRC 5962 then partnered with the Boys & Girls Club of Greater Lowell, and reached out to local schools to seek team members and additional mentors. Their recruiting efforts paid off, and the team grew to include students from Lowell, Dracut, Haverhill, Methuen, North Reading, Chelmsford, Tewksbury, and Tyngsboro MA and Salem NH.

By December 1, more than 30 middle-school and high-school students had “moved in” to the Makerspace, prepared to spend the next six weeks (at times I’m sure it seemed 24-7!) designing and building a robot for the international FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition.

The students put their technical skills to the test by constructing a robot that can complete a variety of tasks and games. Their creation, named “Scorpio,” is built with materials — and limited instructions — provided by the contest’s organizers. During the six-week period, team members learned to use power tools and run sophisticated computer programs under the guidance of engineers from companies such as Analog Devices, Kronos Inc. and IBM. Many of these mentors are UMass Lowell alumni.

Student-designed robotScorpio measures approximately 2½ by 2½ feet and stands 18 inches high. The unit weighs about 120 pounds and is powered by a 12-volt rechargeable battery.

Though the season has come to an end, FRC 5962 has made a significant contribution to the FIRST competition, and garnered an impressive number of awards. Their final ranking for the robotics season includes:

Rookie All-Star Award – North Shore District Event: Celebrates the rookie team exemplifying a young but strong partnership effort, as well as implementing the mission of FIRST to inspire students to learn more about science and technology.

Gracious Professionalism Award – UNH District Event: Celebrates outstanding demonstration of FIRST Core Values such as continuous Gracious Professionalism® working together both on and off the playing field.

Highest Rookie Seed Award – UNH District Event: Celebrates the highest-seeded rookie team at the conclusion of the qualifying rounds.

Rookie Inspiration AwardNew England District Championship: Celebrates a rookie team’s outstanding success in advancing respect and appreciation for engineering and engineers, both within their school, as well as in their community.

Ranked 48 of 181 teams – FIRST Robotics Competition 2016, New England District

10636558_1670526366531474_7541646254686779375_o
We are extremely proud of the dedication of PerSEVERE’s students and mentors and their AMAZING finish in their very first contest. It has been fun to witness the students’ energy and excitement for engineering while working away in our campus lab over the past several weeks. We look forward to more building in the future!

-Joe

Mechanical Engineering junior shaping minds and changing lives in Boston’s South End

Samariah (Sammy) Jacobs, a UMass Lowell Mechanical Engineering junior, is doing amazing work getting inner city Boston youth creatively engaged in technology and engineering, as a mentor in the 14 year old Learn 2 Teach, Teach 2 Learn program at the South End Technology Center @ Tent City. 

Blinkieelectricl2tt2l

Sammy, fellow L2T/T2L college mentors and youth teachers just won an international Google RISE award for their work and the National Science Foundation is studying their work as national best practices in a Digital Literacies research project.  

Each year, 36 teenage youth teachers, who are selected to represent Boston, learn 6 different technology and engineering modules, build projects that solve community issues, then offer free 3-4 week STEAM camps for 700+ Boston elementary and middle school youth at 25 community organizations who would not otherwise offer STEM enrichment.  

SquishaySoccerSamRafaelSammy was a youth teacher when she was in high school and now is in her second year of working as a college mentor in the program.  Last year, Sammy developed a solar energy activity where youth soldered up solar circuits to power the propeller on their own lasercut wood airplane.  She just developed two activities and began teaching them to new youth teachers:  Teh Squish-ay (using conductive dough to teach electricity and circuits with LEDs, motors, tilt switches, photocells) and Blinkie Paper (uses linkages with circuit stickers to create light up cards).  

 

My sincere appreciation to Dr. Susan Klimczak, L2T Director of Special Programs, for calling attention to Sammy’s inspiring community contributions. She is a shining example of just one of the many reasons why I am so proud to be Dean of the College of Engineering. Look for more information on Sammy and her work at Tent City in future posts.

E-Week, Leadership Colloquium and Faculty Tech Venture Competition, OH MY!

We are full swing into the spring semester and I am happy to report we have LOTS going on! I swear I can hear the office humming some days.

Beginning Monday, we celebrate annual Engineering Week. Six student teams will vie for the coveted Dean’s Cup through five days of challenges and contests. Tuesday, we welcome alumna Robin Antonucci ’79 back to campus as our Dean’s Leadership Colloquium speaker  and we will induct over 100 seniors into the Order of the Engineer.

Finally, on Saturday the 27th, we welcome our Engineering Alumni (all of you!) back to the Tsongas to watch the River Hawks take on the BC Eagles (takes a breath). Tickets are still available for the reception in the Talon Club and the game. Click Here to purchase.

If that’s not enough, TONIGHT we are kicking off a new Faculty Tech Venture Program and Competition! 

The program will feature six interactive sessions covering various topics that are core to commercializing university technologies using start-up mechanisms. Topics include customer discovery, market research and validation techniques, concept feasibility testing, technology roadmapping and pricing and revenue model development. Sessions are hands-on and interactive, and will be facilitated by the New Venture Development staff and Manning School of Business faculty.

The goal of the program and competition is to help interested faculty (and their research teams) move an idea, invention, or start-up company forward. The winner will be awarded a two-course release in the fall along with additional resources to pursue their project.

The competition will culminate with a Tech Venture Pitch on May 5th. I truly look forward to learning more about faculty projects and supporting their commercialization efforts.Stay tuned for photos of tonight’s event and more information on our faculty projects.

-Joe