The Perfect Capstone Experience

ABET, formerly known as the Accreditation Board for Engineering and Technology, requires an integrative experience for all accredited programs. Specifically, according to

Baccalaureate degree programs must provide a capstone or integrating experience that develops student competencies in applying both technical and non-technical skills in solving problems.

To me, the key to this experience is the application of both technical and non-technical skills. Interestingly, when employers are asked to rank the importance of different skills for new workers, they generally focus on non-technical skills. In a recent survey of employers, the National Association of Colleges and Employers (NACE) ranked leadership; ability to work in a team; communication skills (written); problem-solving skills; communication skills (verbal); strong work ethic; and initiative, ahead of quantitative and technical skills in terms of importance.

This is why it is critical that students gain experience during their schooling, and why I champion co-ops and internships. However, if designed properly, the capstone experience that is required by ABET provides another opportunity to develop integrated technical and non-technical skills. The key ingredients to these capstone projects are:

  • Complex design problem defined by external stakeholder and faculty mentor.
  • Teams of interdisciplinary teams working towards a solution.
  • Significant and ongoing opportunities for written and oral communication between the student teams, mentor and stakeholder.

I truly believe that the best projects come from outside the ivory tower. This is not to say that a Professor cannot define a great project for a student team to tackle – surely they can. However, they cannot provide an “outsider’s perspective” on the provided solution. That is, if a problem is defined by an external stakeholder (i.e., company, government entity, non-profit agency, etc.) that has a vested interest in the solution, then the students will be required to communicate the development of the solution over time with that entity. This is an important skill for students to develop – even engineers have to learn to “sell” their solutions, to co-workers, administrators, and clients. Furthermore, this generally requires both written and oral communication. (Note: it is assumed that the design problem posed by an external stakeholder is properly vetted and scoped, and that a faculty mentor will also work with the team.)

Our Electrical and Computer Engineering (ECE) program has been working with non-profit agencies for years through its Assistive Technology Program. Through these projects, students develop technological solutions for people in need (i.e., physical or learning disabilities, etc.). The program continues to grow in scope, with projects starting to reach beyond just ECE capabilities.

Other Departments work with external partners too. Our Civil and Environmental Engineering Department has completed projects with the Massachusetts State Police while our Mechanical Engineering Department has completed projects with the National Parks Association. ME has also partnered with Physics to work on satellite design projects for NASA.

Turning to industry for that “outsider’s viewpoint”, we launched a new Interdisciplinary Senior Design program two years ago with great success. This year, we ran 16, year-long projects for Computer, Electrical, Mechanical and Plastics Engineering majors with sponsors that included Analog Devices, BAE Systems, Brooks Automation, Dell EMC, MACOM, MKS Instruments, Nypro (A Jabil Company), Raytheon, Skyworks, Symbotic and UTC Aerospace Systems. In general, the students proposed a solution in the first semester (after significant research) and built a prototype in the second semester.

While the solutions were great, I was more excited about the ongoing communications during the semester. The student teams were required to write a memo each week, detailing the advances for the week, next steps, and current (or potential future) concerns. This provided a running development log (augmenting project management plans as well as student engineering notebooks) and introduced the concept of risk analysis to students (by forcing them to identify current or potential concerns). It also served as a basis for weekly discussions between the students, the stakeholder, and the faculty mentor.

In addition to the memos and engineering notebook logs, the students were required to write multiple reports, develop a summary poster, and deliver numerous presentations. The final presentations were delivered in front of all teammates, classmates, faculty advisors, and stakeholder liaison engineers. It was the perfect culminating experience to the capstone program for this year. And it illustrated that a properly defined and executed capstone design project can advance those skills identified by NACE to be highly desirable by industry.